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Abstract

Our previous work on wind power curve modeling using statistical models focused on a location
with a moderately complex terrain in the Altamont Pass region in northern California (CA). The
work described here is the follow-up to that work, but at a location with a simple terrain in northern
Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability
afforded by adding information beyond the hub-height wind speed, such as wind speeds at other
heights, as well as other atmospheric variables, to the power prediction model at this new location
and compare the results to those obtained at the CA site in the previous study. While we reach
some of the same conclusions at both sites, many results reported for the CA site do not hold at
the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy
of wind power prediction relative to using the hub-height wind speed alone at both sites. However,
in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as
the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a
predictor significantly improved the power prediction accuracy. The same was true for that site when
air density was added to the model separately instead of using the standard air density adjustment.
At the OK site, these additional variables result in no significant benefit for the prediction accuracy.

1 Introduction

Our previous work on wind power curve modeling using statistical models focused on a location with
a moderately complex terrain in the Altamont Pass region in northern California (CA). The goal of
that work was to determine the gain in predictive ability afforded by adding information beyond the
hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to
the power prediction model at that location. We found that considerable improvements in prediction
accuracy can be achieved both through the addition of predictors other than the hub-height wind speed
and the use of statistical models. In particular, we found that expanding the wind speed information
from hub-height wind speed alone to a vertical profile of wind speed measurements at 12 heights
reduced the root-mean-squared error (RMSE) by 2% of the rated power in any given 10-minute period.
In addition, adding wind veer as an input to the power curve model yielded significant reductions in
RMSE for any set of wind speed inputs. The same was true for using air density as a separate
input instead of using the air density adjustment to wind speed recommended by the International
Electrotechnical Commission (IEC) [1]. The study and its conclusions, as well as relevant prior work
done by various authors, are all described in detail in [2]. In this report, we repeat the same analysis
for a new location, in northern Oklahoma (OK), where the terrain is simple in contrast to the CA site.
We compare the results obtained at the two sites.

2 Site and Data Description

2.1 California (CA) site

The wind farm studied in [2] is located in the Altamont Pass Wind Region in Northern California,
approximately 70 km east of San Francisco. The exact location and name of the site is proprietary
information, and we will refer to it as the California (CA) site. The farm consists of 38 IEC Class
ITA horizontal-axis turbines that are located along the top of roughly parallel ridgelines (Fig. 1). The
wind turbines are blade-pitch controlled, 1-MW Mitsubishi (MWT62-1000A). The specifications of the
individual turbines are listed in Table 1, and the corresponding manufacturer’s power curve (MPC) is
shown in Fig. 2(a).

The terrain both upwind of and within the Altamont Pass Wind Farm is moderately complex.
Locally, the hills and ridgelines have maximum heights of around 400 m although most are 200 m or
less. The area is covered with short, uniform grassland of low canopy roughness. Wind speeds peak in



Figure 1: Satellite and photographic images of the 38-MW Altamont Pass wind farm showing the
turbines, surrounding terrain and locations of the lidar campaigns including the summertime lidar
deployment upwind of turbines A7-A10. The wind farm is located in the Canada de los Vaqueros hills
near the Altamont Pass in Contra Costa County, California.
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Figure 2: The MPC (power in MW vs. hub-height wind speed in m/s) for (a) the MWT62-1000A
turbine [3] at the CA site and (b) the GE 1.68-82.5-60 Hz turbine [4] at the OK site, with the vertical
lines indicating the cut-in, rated and cut-out speeds listed in Tables 1 and 2, respectively, and Roman
numerals labeling the three regions of each power curve defined by these speeds.



Table 1: Specifications of the MWT62-1000A turbines used in the study [3].

Wind class IEC Class ITA || Hub height 55 m

Cut-in speed | 3 m/s Rotor diameter | 61.4 m
Rated speed 12.5 m/s Blade length 29.5 m
Cut-out speed | 25 m/s Rated power 1 MW

the spring and summer afternoon hours due to strong, synoptically-driven sea breezes. During these
months flow at the farm is influenced by three topographical features of decreasing scale: the California
Coast Range which influences the regional upper air flow, a 9-km-long canyon just to the west of the
park which alters the landscape flow, and the surrounding hills, ridges and small drainage valleys which
change the local flow. Regional flow is controlled by a strong diurnal temperature contrast between
the interior land and Pacific Ocean which synoptically induces a westerly flow of strong, cooler marine
air.

In June through August of 2012, we deployed a pulsed Doppler light detection and ranging (lidar)
instrument (Leosphere, Orsay, France) to obtain measurements of the free-stream, un-waked flow (also
called inflow) as it approached a leading row of turbines (Fig. 1). The lidar provided nearly 2,000 hours
of horizontal wind speed (m/s), wind direction (°), vertical wind speed (m/s) and turbulence intensity
(%) measurements across the entire rotor disk. The lidar was programmed to measure from 40 m to
150 m at 12 levels spaced 10 m apart. Due to the moderately complex terrain and the placement
of the turbines along the ridgeline, the lidar was deployed at an elevation lower than the turbines.
This was done to ensure that the instrument was placed 2—4 rotor diameters upwind of the turbines
as recommended by the International Electrotechnical Commission (IEC) 61400-12-1 report [1]. Note
that complex terrain reduces the accuracy of lidar, and at this site the uncertainty in the wind speed
measurements is estimated to be 3-5% based on studies of test sites with similar topography [5].

The turbines directly downwind of the lidar were A7, A8, A9, A10 and All depending on the
wind direction at any given time (Fig. 3(a)). Turbines V1 and V2 were west of the lidar and could
have waked the lidar measurements when the winds were from 270-280° (see Fig. 1). Fortunately, this
wind direction was very infrequent. Instead, the strong prevailing wind direction (225-250°) meant
that turbine A8 was most frequently downwind of the lidar. Careful analysis of the wind direction at
each measurement height showed topographic-induced flows at heights closer to the ground. The lidar
was placed at the edge of an abutment on the hill (Fig. 4(a)) and the wind direction measurements
at 40 m to 70 m indicated that the flow was often redirected around the small hill feature. This
caused significant wind veer (i.e., changes in wind direction with height) over these distances. Veer
was significantly smaller at heights above 70 m.

The Supervisory Control and Data Acquisition (SCADA) system provided 10-minute averages
of ground-level air density, hub-height wind speed and power output for all turbines, for the same
10-minute intervals as the lidar data. The SCADA data also contained other statistical summaries,
including standard deviations, for these 10-minute intervals. Wind speed was measured with a nacelle-
mounted cup anemometer (NRG #40, NRG Systems, Inc., Vermont, USA). The site also had one
30-m tall meteorological tower which took measurements of wind speed and direction at one height
at the top of the tower. However, these measurements were not used here because the tower was not
upwind of turbine A8 and there were concerns about the data quality of these measurements. As
described in detail in [2], besides filtering the data to include only those points without any missing
lidar and SCADA data, we also restricted our analysis to observations corresponding to 90-m wind
speeds between 3.5 and 11.5 m/s (to exclude observations in regions I and III of the power curve) and
90-m wind direction in the range 225-250°.
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Figure 3: (a) Wind rose of 90-m wind measurements taken from the lidar during the campaign period
(June-August 2012) and the relative locations of nearby turbines. The plot shows a high frequency
of winds coming from the southwest (220-240°), implying that A8 (highlighted in red) is the turbine
most often downwind of the lidar. (b) Wind rose of 80-m wind measurements obtained by the lidar
during the campaign period (November 2013—January 2014). Westerly and easterly winds were rarely
seen at the site. Winds were predominately from the north or south. The lidar measured free-stream,
wake-free inflow measurements for turbine B06 during southerly winds.
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Figure 4: (a) Schematic of the hill profile and locations of the lidar and turbine A8 relative to one
another, at the CA site. The lidar was located 3.6 rotor diameters (D) upwind of A8. (b) Schematic
of the terrain profile and locations of the lidar and turbine B06 relative to one another, at the OK site.
The lidar was located 2.3 rotor diameters (D) upwind of B06. Free-steam inflow measurements were
easy to obtain at this site as the terrain influences were minimal.



2.2 Oklahoma (OK) site

The second wind farm we studied is located in north-central Oklahoma, approximately 120 km from
Oklahoma City. The exact location and name of the site is proprietary information, and we will refer
to it as the Oklahoma (OK) site. The farm consists of 140 horizontal-axis turbines that are spread
across 25 km from west-to-east in rural Oklahoma. The wind turbines are blade-pitch controlled, GE
1.68 MW (1.68-82.5-60 Hz). The specifications of individual turbines are listed in Table 2, and the
corresponding MPC is shown in Fig. 2(b).

Table 2: Specifications of the GE 1.68-82.5-60 Hz turbines used in the study [4].

Wind class IEC Class IIB || Hub height 80 m
Cut-in speed | 3 m/s Rotor diameter | 82.5 m
Rated speed 13 m/s Blade length 40.3 m
Cut-out speed | 25 m/s Rated power 1.68 MW

The local and regional terrain is relatively simple; however, the synoptic meteorology is relatively
complex and is influenced by mountain systems to the west and cold/warm frontal passages originating
from the north or south. On atmospherically stable nights, a decoupled flow event, called a nocturnal
low level jet (LLJ), often forms during the spring and summer months. The wind farm is located within
a climatological maximum of U.S. LLJ occurrences [6]. LLJs produce maximum wind speeds frequently
within the lowest 500 m of the atmosphere and can go down to heights found within the upper half of
the rotor disk. Mechanically-generated turbulence is often observed below the maximum of the jet and
may also penetrate heights found within the rotor disks. Wind shear and turbulence characteristics
found at heights within the rotor disk are also strongly influenced by local surface heating and cooling.

A continuous-wave Doppler ZephIR 300 lidar (Zephir Ltd., Ledbury, UK) was deployed at the
farm November 11, 2013-January 31, 2014. We focused on capturing inflow to a leading row turbine
at the south end of the wind farm called, referred to as B06 (see Figs. 5 and 4(b)). This turbine
was unwaked and downwind of the lidar and a 80-meter-tall meteorological tower when winds were
southerly (135-225°). The lidar was programmed to measure at heights equivalent to the entire rotor
disk (40-120 m). Exact heights were 40-130 m with measurements taken every 10 m. Measurements
included 10-minute mean values of horizontal wind speed (m/s), wind direction (°), vertical wind speed
(m/s), and turbulence intensity (%). Reported accuracy for the ZephIR in ideal conditions (e.g., flat,
homogenous terrain) is less than 0.5% for wind speed and below 0.5° for wind direction.

The SCADA system provided 10-minute statistics (mean, maximum, minimum, standard deviation)
of ground-level air density, hub-height wind speed, nacelle position, pitch angle, rotor speed, and power
output for all turbines, for the same time intervals as the lidar data. Wind speed was measured with
a nacelle-mounted cup anemometer in a similar fashion to the CA site.

The co-located lidar and 80-meter-tall meteorological tower measurements were first compared
for quantifying instrument agreement in wind speed and direction at hub height (80 m). We found
excellent agreement for both wind speed and direction (correlation of 0.99 for both). This gave us
confidence in the lidar’s accuracy. The 10-minute averages of lidar measurements at 80 m are thus
our baseline in this work. Fig. 6 shows the distribution of the differences between the nacelle and the
80-meter lidar wind speed means. As can be seen from it, the wind speed measured at the nacelle
tends to be lower than the 80-m lidar wind speed, with the median discrepancy of 0.75 m/s and the
RMSE between the two measurements of 0.87 m/s. The consistently lower measurements are due to
the flow obstruction at the nacelle caused by the turbine blades.

The wind direction at the site is predominantly from the north or south depending on season. Dur-
ing the winter the winds have a bimodal distribution between the north and south sectors (Fig. 3(b)).
Southerly winds occurred approximately 45% of the time and put the first-row turbines directly down-
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Figure 5: Satellite image showing the meteorological tower and first-row turbines, B04-B06 and CO01.
The lidar was co-located with the 80-m-tall met tower. The lidar and tower were 2.3 rotor diameters
(D) (190 m) upstream of Turbine B06. The site’s flat terrain is in distinct contrast to the moderately
complex terrain found at the CA site.
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Figure 6: The distribution of the differences between the nacelle and the 80-meter lidar wind speed
means (m/s), with a positive difference implying that the nacelle mean is the larger of the two (RMSE
= 0.87 m/s, correlation = 0.98).
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Figure 7: Ten-minute average power (MW) at turbine B06 vs. 10-minute average wind speed (m/s)
measured by the lidar at 80 meters above ground (black circles). Also shown are the data filters
described in Section 2, the predictions using the MPC and the bias-corrected MPC (see Section 6),
and the data-smoothed power curve as a function of the wind speed mean at 80 m (see legend).

wind of the lidar. As a result, wind directions in the range 135°-225° were ideal for the lidar to capture
inflow conditions seen by B06 (note that north corresponds to 0°), so the data were restricted to these
wind directions. The data were further limited to the time periods without any missing SCADA data.

Moreover, as in [2], in this study we focused only on the 80-meter wind speeds that corresponded
to region II, or the portion of the power curve where power is most sensitive to small changes in wind
speed. For an MPC, this corresponds to the range between the cut-in and the rated hub-height wind
speeds, i.e., between 3.5 m/s and 13 m/s in our study, as can be seen from Table 2 and Fig. 2(b).
Since our data are 10-minute averages, we adjusted this range so that the observed 10-minute power
averages are largely constant (very close to 0 or rated power) outside the chosen limits and are thus
minimally contaminated by observations from regions I and III. This adjustment led us to restrict the
data to 80-meter average speeds between 4.5 m/s and 11 m/s (see Fig. 2(b)). This and all the other
filters discussed above resulted in 1404 data points, each representing a 10-minute period of lidar wind
flow and power data.

3 Inputs to the Power Curve Model

3.1 Wind speed inputs

Since the study performed at the CA site is covered in detail in [2], for the remainder of this report
we only discuss the OK study (with the exception of Section 6, where we compare and contrast the
results obtained at the two sites).

Although the SCADA data provided wind speed measurements taken at the nacelle of the turbine,
these measurements can deviate from the true inflow conditions because the cup anemometer is subject
to flow distortion from the blades and the nacelle hub. Consequently, we considered lidar measurements
of free-stream wind speed rather than the nacelle measurements as the baseline in this study. The
appropriateness of using the former as the baseline is discussed in more detail in Section 6.1.



Recall from Section 2 that lidar wind speed averages measured at 80 meters were considered the
baseline input in this study. The distribution of these measurements is shown in Fig. 8(a). As in [2],
we applied the IEC-recommended air density adjustment [1] to the 80-meter lidar wind speed average
and treated this adjusted wind speed as the baseline. The adjustment is given by

o\ 3
Udadgj = U <> . (1)

Po

where Uy qq; and U are the density-adjusted and the original wind speeds (in m/s), respectively, while
p and po are the measured and the standard air densities (in kg/m?), respectively (pp = 1.225 kg/m?).
The motivation for this adjustment is explained in more detail in [2].

First, we modeled the power output at B06 as a function of density-adjusted wind speed variables
alone (using the adjustment in Eq. (1)). One way to include information about the entire vertical
profile of wind speeds is to estimate the average inflow seen by the entire rotor disk of the turbine.
This can be done using the rotor-equivalent wind speed (REWS), defined in [7]. As explained in more
detail in [2], the REWS is simply the weighted average of the mean wind speeds in each height interval
across the rotor disk, where the weight for each interval is equal to the area occupied by the interval
as the fraction of the total area of the rotor disk.

Fig. 8(b) shows the distribution of the differences between the 10-minute average wind speed at 80
meters and the REWS. It reveals that these differences can be large, particularly when compared to
those at the CA site (see Fig. 9(b)). For reference, the absolute difference exceeds 0.1 m/s for 25% of
the observations at the OK site, compared to 6% at the OK site. This is because, as can be seen from
Fig. 8(c), the magnitude of wind shear can be high at this site. Wind shear is defined as the value of
« in the power-law profile of wind speed U(z) as a function of height z: U(z) = 2. By contrast, at
the CA site examined in [2], the magnitudes of the differences between the 90-meter wind speed (the
baseline wind speed input at that site) and the REWS, as well as the magnitudes of shear were much
lower, as shown in Figs. 9(c) and 9(d), respectively.

As in [2], in addition to using the REWS as an input, we also explored using the entire profile
of wind speed means in the model directly. In addition, we studied the effect of supplementing this
profile with the profile of wind speed standard deviations, as these provide estimates of turbulence in
the mean wind flow. The effects of turbulence on power and the motivation for including turbulence
information in a power curve model are discussed in [2]. For reference, the distribution of one of the
most commonly used measures of turbulence in the wind power industry, the turbulence intensity (TT),
is shown in Fig. 8(d). It is defined as the ratio of the standard deviation to the mean of wind speeds
in a 10-minute period at a given height (80 meters in the plot). Fig. 8(d) shows that for the majority
of observations (71%), the TI is below 10%, in contrast to the CA site, where the equivalent fraction
of observations is only 5.5%. This difference is due to the fact that the variability of the flow (as
measured by the 10-minute standard deviation of the wind speeds) is smaller at the OK site than at
the CA site.

As with the 80-meter wind speed mean, we applied the density adjustment in Eq. (1) to the entire
vertical profile of means. In addition, an equivalent adjustment was applied to the profile of standard
deviations:

SDua(U) = D) () 2 )

We explored the same five sets of wind speed variables as in [2]. These were all adjusted for air
density and are henceforth collectively referred to as Group 1 (the parentheses after each input set
contain the label used for that set in the plots in Section 6):

1. Wind speed mean at 80 meters (ws 80m mean),

2. Wind speed mean at 80 meters + standard deviation at 80 meters (ws 80m mean + sd),
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Figure 8: The observed frequency distributions of the following (based on 10-minute means) at the
OK site: (a) 80-m wind speed (m/s), (b) difference between the 80-m wind speed and the REWS
(m/s), (c) wind shear exponent «, (d) TI at 80 m, (e) wind veer (degrees), as defined in Section 3.2,
and (f) ground-level air densities (kg/m?).
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3. Rotor-equivalent wind speed(ws equiv),
4. Entire profile of wind speed means at the 10 heights (40, 50, ..., 130 meters) (ws all mean) and

5. Entire profile of wind speed means + entire profile of wind speed standard deviations at the 10
heights (ws all mean + sd).

Note that the first set in the above list corresponds to our baseline method of modeling power as a
function of the density-adjusted wind speed at the hub height alone. The other sets, on the other
hand, include additional information, either in the form of the temporal variability in the wind speed
(set 2) or wind speeds measured in other parts of the profile (sets 3 and 4), or both (set 5).

Furthermore, because the dimensions of the last two sets above are quite large (10 and 20 for sets
4 and 5, respectively) and the wind speeds at various heights are highly correlated (correlation values
range between 0.66 and 0.99), these two sets were also subjected to a principal component analysis
(PCA, see [8]) in order to reduce their dimensions, thereby greatly simplifying fitting of the statistical
models discussed in Section 4. The top components that together accounted for at least 99% of the total
variance were retained. Note that the aforementioned Group 1 of input sets includes the PCA-reduced
versions of sets 4 and 5.

3.2 Additional atmospheric inputs

To assess the effect of wind veer in the OK data, we used the circular standard deviation (see [9]) of
all wind direction averages measured by the lidar in the 50-80 meter height range as a way to quantify
it. This range was used because wind direction averages at these heights had much higher circular
correlations (see [9]) with the nacelle wind direction average than those at the other heights. Fig. 8(e)
shows the frequency distribution of wind veer defined in this way. Relative to the CA site, wind veer
at the OK site tended to be much smaller, as can be seen by comparing Figs. 8(e) and 9(e). Its effect
on power at this site is thus also expected to be smaller than at the CA site. Nevertheless, we added
it to each of the input sets in Group 1, thus creating another group of input sets, referred to as Group
2.

To account for the effect of air density on power, in addition to using the standard air density
adjustment in Eq. (1), we also considered the approach of adding the 10-minute air density average
at ground level as a separate input to the unadjusted versions of each of the input sets in Group 1,
thus creating Group 3. The frequency distribution of air density values, shown in Fig. 8(f), reveals
that the densities at this site are centered around the standard value of 1.225 kg/m3. This is in stark
contrast to the air density distribution at the CA site (shown in Fig. 9(f)), where all the density values
were below the standard value. Because most of the density values in the present data are close to the
standard value, we do not expect a large difference between the methods of adjusting for density in
terms of the power prediction accuracy.

As in previous work, Group 4 of input sets was created by adding both wind veer and air density to
the unadjusted wind speed input sets in Group 1. The four groups thus resulted in a total 4 x 5 = 20
input sets. The variables included in each group are summarized in Table 3.

4 Statistical Models

As in [2], we compared three statistical models—neural networks (NN), random forests (RF) and Gaus-
sian process models (GPM)—in terms of their ability to predict power. Whiel Appendix A gives basic
details of each model, these models and the motivation for using them for this purpose are discussed
in greater detail in [2]. The reader is also referred to [10, 11], [12, 11], and [13, 14, 15] for a detailed
treatment of NN, RF and GPM, respectively, for an even more detailed treatment of each model.
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Table 3: Summary of the power model input variable combinations considered in our analysis. An
“x” under a variable name indicates its inclusion in the group. Each group consists of 5 sets: each of
the five is made up of the wind speed variables enumerated in Section 3.1 (referred to collectively as
“Wind speed” in the table) and all of the variables marked with an “x”. Note that in Groups 1 and
2 the air density adjustments in Egs. (1) and (2) are applied to the wind speed variables, while no
adjustment is applied to these variables in Groups 3 and 4.

Group Input variables

Wind speed | Wind veer | Air density
1 X
2 b X
3 X b
4 b b b

5 Performance Study

To assess the performance of each of the sets of inputs and the three statistical models outlined above,
the 1404 observations consisting of the lidar and SCADA data were randomly divided into two mutually
exclusive sets of 702 points each, the first of which was used to train each of the models with each of
the input sets in each group. For comparison, using the same training set, we also trained each of the
statistical models with the 10-minute mean of the nacelle wind speed as an input.

Each combination of the trained model and input set was then used to make wind power predictions
for the remaining 702 points in the data, and these predictions were compared to the observed wind
power values for these points (henceforth referred to as the validation set). In addition, we obtained
predictions of power using the MPC [4] (shown in Fig. 2(b)) using the same training and validation
sets.

This experiment of partitioning the data, training the models with the training set and making
predictions for the validation set was repeated a total of 30 times to obtain a representative set of
results. For each experiment and model/input set combination, the RMSE of 10-minute average wind
power predictions relative to the actual SCADA data was computed as a metric of predictive skill.
The RMSE for the ith experiment is given by

Z;g(Pij B pz)Z
RMSE; = \/ 702 ’ (3)

where P;; and P, are the actual and predicted power value, respectively, for the jth observation in

;th

experiment’s validation set with ¢ =1,...,30 and j =1, ..., 702.

6 Results and Discussion

6.1 Wind speed inputs

We first consider the results for the input sets involving only the wind speed variables (Group 1).
Fig. 10(a) shows the RMSEs, as fractions of the rated power (1.68 MW), for the 30 experiments
described in Section 5 using lidar measurements of the wind speed as inputs to each of the statistical
models. Also shown in the plot are the RMSEs for the predictions obtained using the bias-corrected
MPC using the density-adjusted wind speed mean at 80 meters as an input. The bias correction is
motivated by the fact that the original MPC tends to overpredict power, as can be seen from the solid
red curve in Fig. 7. Such a consistent bias can be easily corrected by shifting the curve horizontally, to
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Figure 10: Boxplots of RMSE values (as fractions of rated power) at the OK site for the 30 experiments
described in Section 5 using (a) lidar wind speed inputs (sets 1-5 in the list in Section 3.1) and (b)
either nacelle only or a combination of nacelle and lidar wind speed inputs, as described in the text.
The colors represent the statistical models or the MPC as indicated in the legend. The PCA-reduced
versions of each model are denoted with “PCA” after the name of the model. Note that the scales on
the y-axis are the same in the two plots.

the right in this case (in the case of consistent underprediction, as was the case in the CA data [2], the
necessary shift is to the left). The value for the shift can be chosen by finding the value that minimizes
the RMSE (or any other sensible measure of discrepancy) of the predictions relative to the data. We
apply this correction in our study since we assume that any user of an MPC would do so given a
sufficient amount of data, and we treat the bias-corrected MPC as the baseline. The bias-corrected
MPC is shown in Fig. 7 (red dashed curve) and is close to the data-smoothed curve (in blue), indicating
that the correction is reasonable.

The comparison of the RMSEs in Figs. 10(a) and 11(a) reveals that as fractions of the rated power,
the RMSEs at the OK site are much smaller than those at the CA site for all input sets (note that
since the rated power at the CA site is 1 MW, the absolute RMSE value at this site is equal to its value
as the fraction of rated power). Even the worst-performing input set at the OK site (one consisting of
the 80-meter wind speed mean alone) yields much smaller RMSEs (averaging at approximately 0.0425,
or 4.25% of the rated power, across the models) than the best-performing input set (one consisting
of the entire vertical profile of wind speed means and standard deviation) at the CA site (averages
ranging from 0.073 to 0.08). This is not surprising since complex terrain is generally associated with
more complex physical processes than simpler terrain, making wind power prediction at the former
more difficult.

In terms of the relative standing of the input sets with respect to one another, some of the patterns
observed for the CA site are reproduced in these data, while others diverge. As mentioned above,
among the five input sets we considered, the set with just the wind speed mean at 80 meters (the
st cluster of boxplots in Fig. 10(a) is the worst performer in terms of the RMSE, regardless of the
model. This was the case in [2] for the 90-meter wind speed, which was the baseline in that study.
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Figure 11: Same as Fig. 10, but for the CA site. Note that the scales on the y-axis are different in
the two plots.

Moreover, as in [2], for this simplest input set, the bias-corrected MPC and the statistical models tend
to perform equally in terms of prediction accuracy, suggesting that when only the 80-meter free-stream
wind speed mean data are available, the main reason to prefer statistical models over the MPC is the
ability of the former to produce uncertainty estimates associated with predictions.

The comparison of the first two clusters of boxplots in Fig. 10(a) reveals that adding the 10-minute
standard deviation information at 80 meters did not reduce the RMSE in a practically or statistically
significant way (average RMSE reduction was 0.002 as fraction of the rated power). This is in contrast
to the results in the CA data, where adding the standard deviation led to a practically significant
reduction in RMSE fraction of 0.007-0.008, as can be seen from Fig. 11. This is because, as discussed
in Section 3.1, the 10-minute standard deviation of the wind speeds is smaller at the OK site than at
the CA site, making the benefit of adding it to the model much more limited.

On the other hand, in contrast to the CA site, the REWS (3rd cluster of boxplots in Fig. 10(a))
performs significantly better than the wind speed mean at 80 meters, with the average RMSE difference
of 0.007 as fraction of the rated power, across the models. This is due to the fact that, as discussed
in Section 3 and shown in Fig. 8(c), there was a substantial amount of shear at the OK site, which
is largely captured in the REWS. Indeed, the REWS achieves almost the same degree of accuracy as
using the entire profile of wind speed means (4th cluster of boxplots in Fig. 10(a)), with the difference
of 0.001 in average RMSE fraction between the two sets of inputs, across all models. Compared to the
80-meter wind speed alone, the entire profile of wind speed means thus reduces the RMSE by a little
over 0.008, or 0.8% of the rated power. Although this is a statistically significant difference, this is
a much lower reduction than at the CA site, where the difference between these two inputs’ RMSEs
was 2%, as shown in Fig. 11. The reason for the much smaller relative impact of using the entire wind
speed profile on the RMSE of power predictions at the OK site is the same as alluded to earlier: due to
the simpler terrain at the site, even using the hub height speed alone yields highly accurate predictions
compared to the complex terrain site such as the CA farm, so the benefit of adding other information
is relatively small at the OK site.
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Adding the standard deviation profile to the mean profile (5th vs. 4th cluster of boxplots in
Fig. 10(a)) results in very little benefit (RMSE reduction of less than 0.001 as fraction of rated power,
or 0.1%), as in the case of the CA site. This is most likely because the mean profile largely captures the
turbulence information contained in the standard deviation profile. In fact, for PCA-reduced models
(every other boxplot in the 4th and 5th cluster of boxplots in the figure), this addition sometimes
decreases the model accuracy. When using the entire profile of wind speed means only, the PCA
reduction does not lead to a deterioration in predictive skill, however, as was the case in the CA data.

Similarly to the CA site, the statistical models tend to perform more or less equally at the OK site
(the largest difference between a pair of models for the same input site is below 0.0001). The fact that
GPM performs no worse than the other two models is important because, as discussed earlier, it has
the advantage of providing uncertainty estimates in a much more natural manner than NN and RF.
Given this advantage and comparable performance to that of NN and RF, GPM may be the preferred
model in this case.

We now consider the nacelle measurement of the wind speed as an input to the power model. The
Ist cluster of boxplots in Fig. 10(b) shows the performance of the bias-corrected MPC and the statistical
models using the nacelle wind speed mean as an input. In contrast to our findings at the CA site, in
the case of the OK site, the nacelle wind speed performs slightly worse than the 80-m lidar wind speed
in terms of the RMSE, with the average difference in RMSE of 0.006 for all models as a fraction of the
rated power. This validates our choice of 80-meter lidar wind speed as the baseline (rather than the
nacelle wind speed) and confirms our hypothesis in [2] that in flat terrain lidar measurements provide
more accurate wind speed data than in complex terrain. While the nacelle wind speed performs worse
than the lidar wind speeds, combining it with the lidar wind speeds at other heights (2nd cluster of
boxplots in Fig. 10(b)) results in the most accurate prediction of all the wind input sets, as was the
case for the CA site.

In [2], we compared the power prediction accuracy of the wind speed inputs described above with
that resulting from using wind shear exponent « (defined in Section 3.1) and turbulence intensity (TT),
at the CA site. We made the same comparison for the OK site. The results are summarized in Fig. 12,
which shows boxplots of RMSEs for the same experiments as described above, as well as either shear
or the TI added to some of the wind input sets described in Section 3.1. Only the GPM-c and NN
models are shown since the other two models produced very similar RMSE distributions.

While adding shear to the 80-meter wind speed mean (2nd vs. 1st cluster of boxplots) leads to a
small improvement in RMSEs for all statistical models, a much more pronounced reduction is achieved
by using either the REWS or the entire profile of wind speed means (5th and 6th cluster of boxplots,
respectively). This is not surprising since wind shear, which reflects the shape of the wind’s vertical
profile, only partially captures the information found in the entire vertical profile of wind speed means.
Moreover, as the plot shows, even using only the 80-meter wind speed mean and standard deviation
(4th cluster of boxplots) leads to slightly better results than using 80-meter wind speed and wind
shear. As expected, adding shear to a full profile of wind speed means (7th vs. 6th cluster of boxplots)
does not lead to an improvement in RMSE because the information captured in the former is already
conveyed by the latter. These results are very similar to those in [2], with the exception of a really
good relative performance of the REWS.

As in [2], adding TT at 80 meters to the 80-meter wind speed mean (3rd cluster of boxplots) leads to
the same reduction in RMSE as adding the standard deviation at 80 meters (4th cluster of boxplots).
The same is true if an entire profile of TIs is added, when compared to adding an entire profile of
standard deviations (9th vs. 8th cluster of boxplots in Fig. 12).
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Figure 12: Boxplots of RMSE values (MW) for 30 experiments at the OK site using lidar wind speed
inputs (sets 1-5 in the enumerated list in Section 3.1, labeled in black on the z-axis) and sets 1 and
4 combined with either shear exponent (labeled in purple on the z-axis) or TI (labeled in teal on the
x-axis). When combined with set 1, only the TT at 80 meters was used, whereas T1 values at all 10
heights were used when combined with set 4. Only the GPM-c (red) and NN (green) model results are
shown for ease of presentation.
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Figure 13: Boxplots of percent reductions in RMSE (as defined in Section 6.2) for the 30 experiments,
resulting from using variables in Groups 2—4 of Table 3 as inputs relative to using the density-adjusted
wind speed inputs of Group 1 (shown for the GPM-c and NN models only). Percent reductions resulting
from adding (a) wind veer to the density-adjusted wind speed inputs (Group 2 vs. 1), (b) air density
separately to the unadjusted wind speed inputs (Group 3 vs. 1), (c) wind veer and air density to
the unadjusted wind speed inputs (Group 4 vs. 1). The dashed horizontal line represents the RMSE
reduction of 0. Note that the scale on the y-axis is the same for all 3 plots.

6.2 Additional atmospheric variables

Here we examine the results for groups of variables that include inputs other than the wind speed
information, specifically, wind veer, air density added separately to the unadjusted wind speeds and
the combination of the two (Groups 2-4 outlined in Section 3.2 and listed in Table 3). GPM-c and
NN tended to be the best-performing models in the results shown above and in all the other groups
of variables, so in this section we limit our discussion only to these two models. Furthermore, the
PCA-reduced versions of all the larger wind profiles (sets 4 and 5 in the enumerated list in Section
3.1) tended to perform virtually the same as the original profiles for all the groups, so we only show
the results for the former when discussing the larger sets.

Fig. 13(a) shows the percent reduction in RMSE due to adding wind veer to the model already
containing density-adjusted wind speed inputs (Group 2 in Table 3). This is the difference in RMSE for
the models with and without wind veer as a percentage of the RMSE of the latter model, with a positive
reduction implying higher RMSE for the latter model. In contrast to the CA site, where adding wind
veer resulted in median RMSE percent reductions of 11-26% (across input sets and models) relative
to the original RMSEs, in the case of the OK site, this addition yielded very little improvement for all
input sets, with median RMSE percent reductions ranging from 0.6% to 3.4%. This difference in the
results between the two sites is not surprising since, as shown in Figs. 8(e) and 9(e) and mentioned in
Section 3.2, the amount of wind veer is much smaller at the OK site than at the CA site.

As can be seen from Fig. 13(b), while for some input sets there is minimal reduction in RMSE due
to adding density separately to the model rather than using the IEC-recommended density adjustment
in Eq. (1), if the results are averaged over all the input sets and models, the two ways of accounting
for density perform approximately equally. In addition, the positive reductions are not significantly
different from 0. This is in contrast to the CA site, where including density as a separate input yielded
significant improvements in RMSE (12-28%) relative to using the IEC adjustment. This difference
between the two sites is also expected since, as shown in Fig. 8(f) and mentioned in Section 3.2, the
density values at the OK site center around the standard density. The closer the observed density
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value is to the standard density, the less important it is to account for density, so the method of doing
so becomes more and more inconsequential.

The plot in Fig. 13(c) shows the improvement resulting from having both wind veer and air density
in the model when these are added to the unadjusted wind speed inputs (Group 4 in Table 3), relative
to using only the air density-adjusted wind speed inputs. The combined effect of adding wind veer and
air density is approximately the same as the effect of adding wind veer because, as mentioned above,
there is no benefit from adding air density separately relative to using the IEC air density adjustment.

6.3 Caveats

Many of the caveats in our CA site data analysis (discussed in [2]) apply to the OK data, as well. The
following is a summary of the shared limitations between the two sites’ analyses:

1. The study was limited to a period of 10 weeks.

2. The study was limited to just one turbine rather than an entire wind park.

3. The analysis did not address numerical weather prediction model or lidar measurement error.
4. The analysis was limited to region II of the power curve.

5. The analysis ignored the effects of the turbine and only focused on the atmospheric variables.

6. The use of RMSE as a performance metric has limitations, and other metrics, such as the ability
to accurately detect various parameters of ramps in power should be examined.

7. Ten-minute averages may be too coarse to capture certain meteorological phenomena.

It should be noted, however, that one of the main purposes of this study was to begin to address an
additional caveat mentioned in [2]. Namely, in that work we noted that our analysis was limited to one
location. The study in this report provides information about an additional location and terrain type
and is thus a good starting point to obtaining a cross-site comparison and gaining a wider understanding
of key determinants of wind power production.

7 Summary and conclusions

This report presented the results of the power curve analysis for the OK site, which has a flat terrain,
and compared them to the previous findings for the CA site, which has a moderately complex terrain.
Many of the conclusions are the same for the two sites, but there are several important differences,
primarily due to the difference in the terrain at the two sites.

The following is a list of similarities in the findings at the two sites:

1. The statistical models performed equally well relative to one another in terms of power prediction
accuracy.

2. Using the entire vertical profile of wind speeds improved the accuracy of power predictions relative
to using the hub-height wind speed alone (however, the degree of improvement differed at the
two sites, as summarized below).

3. Shear exponent was inferior to both the standard deviation of hub-height wind speeds and the
entire vertical profile of wind speed means as a predictor of wind power. At the OK site, it was
also inferior to the rotor-equivalent wind speed (REWS).
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4. Using the hub-height turbulence intensity in conjunction with the hub-height wind speed mean

led to the same prediction accuracy as using the hub-height standard deviation together with the
hub-height wind speed mean.

The differences between the results at the two sites were as follows:

1.

Prediction accuracy was much higher at the OK site than at the CA site due to the much simpler
terrain of the former. As a result, the worst-performing input predictor set (hub-height wind
speed mean alone) at the OK site resulted in greater accuracy (as fraction of the rated power)
than the best-performing predictor set (the entire vertical profile of wind speed means) at the
CA site.

. The degree of improvement afforded by using the entire vertical profile of wind speed means

relative to using the hub-heigh wind speed alone was much greater at the CA site than at the
OK site. This is because even the simplest predictor sets at the OK site resulted in very high
accuracy relative to the CA site (for the reason stated above), so the benefit from adding more
predictors was marginal at the former.

. At the OK site, using the REWS resulted in significant improvement in power prediction accuracy

relative to the hub-height wind speed. This was not the case at the CA site, where the two yielded
very similar prediction accuracy.

Adding wind veer to the predictor set resulted in a significant improvement in power prediction
accuracy at the CA site, but not at the OK site. This is because the amount of wind veer was
very small at the latter.

. Adding air density separately to the predictor set instead of adjusting the wind speed for air

density using the IEC-recommended adjustment resulted in a significant improvement in power
prediction accuracy at the CA site, but not at the OK site. This is because air density values
tended to be close to standard at the OK site, making the air density adjustment less relevant
there than at the CA site.

Table 4 summarizes the improvements in RMSE resulting from using various input sets relative to the
hub-height wind speed mean for each of the two sites. All of the results presented here must be further
validated at more locations with different terrain and turbine types, for longer time periods and other
seasons.

Table 4: Median RMSE reductions (as fractions of rated power or percent change, as indicated)
relative to using the hub-height wind speed (HH WS) mean as an input to the power curve model at
each of the two sites (sd = standard deviation). Note that a negative value means that the RMSE

increased.
Input(s) OK site CA site
HH WS mean + sd 0.002 0.007
REWS 0.007 0.003
Profile WS mean 0.008 0.02
Nacelle WS mean -0.006 0.06-0.09
Wind veer 3.4% 27%

Air density added separately (wrt IEC adjustment) Insignificant difference 28%
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A Additional details on the statistical models

A.1 Neural network

A neural network (NN, also known as an artificial neural network, or ANN) is a non-linear regression
model whose mathematical structure mimics the behavior of biological neural networks. In particular,
if using a single-layer network, the response Y, such as power output in our case, is modeled as a linear
combination of basis functions ¢;, j = 1,...,J, each of which is a non-linear function of predictors x
(such as those discussed in Section 3):

J
Y(z) =) wi;(x). (4)
j=1

We used the default sigmoid function for the basis functions ¢;, whereas the weights w; and the
number of basis functions J were both determined using cross-validation. The library nnet [16] in the
R package [17] was used to fit the NN model. See [10, 11] for a more thorough treatment of NNs.

A.2 Random forest

Like NN, a random forest (RF) is a regression model. This method constructs an ensemble of regression
trees, and the individual trees’ predictions are averaged to obtain the final prediction. Different trees are
constructed by first randomly sampling the training data and then randomly sampling the predictors
at each node of the tree. The library randomForest [18] in the R package [17] was used to fit the RF
model. Defaults of various parameters required by the model were used, except for the number of
predictors that are randomly sampled at each split, which was tuned to minimize the out-of-bag error.
For a more thorough treatment of RFs, see [11, 12].

A.3 Gaussian process model

A general formulation of the stationary Gaussian process model (GPM) is as follows:
Y(x) = g" ()8 + Z(), ()

where Y is the output, x is the vector of predictors, g is a user-defined function, 3 is the vector of
the coefficients associated with each predictor, and Z(x) is a stationary error process, modeled as a
multivariate Gaussian random variable with 0 mean vector and a user-specified covariance, given by

Cov(wi, x5) = K(||z; — ;). (6)

The covariance between any two output values is thus modeled as a user-specified function K of the
Euclidean distance between their corresponding predictor vectors x; and x;, ||&; — x;|.

The above model specification for the output value Y (x) implies that the joint distribution of
the predicted value Y (@new) at a new set of input values @pneqw and the observed training set values
y(x1), ..., y(xyn) (in keeping with the standard practice in GPM literature, we denote the predictions and
the observed values with the large-case and small-case letters, respectively) is multivariate Gaussian,
while the predictive distribution of Y (€new) (i.e., its distribution conditional on the observed response
data) is univariate Gaussian. This result is the foundation of GPM prediction inference. See [13, 14, 15]
for a detailed treatment of GPM.

The Gaussian random variable is defined on the entire real number line, whereas power output is
bounded below by 0 MW and above by the rated power (1.68 MW in the case of GE 1.68-82.5-60 Hz
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wind turbine considered in this work). Consequently, the power values are first transformed using a
logit transformation, as follows:

P(z)
Y(z) =log | ——2)
@) =tog (12 o) @
where P(x) is the power value normalized to the rated power and
P*(a) = Pla)- (1-20) +c, (8)

with ¢ a positive constant close to 0. Including c¢ ensures that the logit in Eq. (7) is defined for
normalized power values of 0 and 1 since Eq. (8) results in P*(x) of ¢ or 1 — ¢ when power P(x) is 0 or
1, respectively. The value of ¢ is chosen so that Y (x) in Eq. (7) is as close as possible to the Gaussian
distribution.

The GPM is then used to obtain the parameters of the predictive Gaussian distribution of Y (Znew),
which in turn leads to the logit-normal [19] as the predictive distribution of P*(Znew), i-€., the condi-
tional distribution of P*(Zpnew) given the observed power values. From Eq. (8) it follows that

P*(x) —c

Ple) =5 ®)
so the predictive distribution of P(Znew) is a logit-normal shifted by ¢ and scaled by 1 —2¢. The point
prediction of power is then the mean of the predictive distribution of P(Zyeqw) since this mean is the
minimum mean squared prediction error predictor of P(@new). It is obtained by numerical integration
using the logitnorm package [20] in R and applying the transformation on the right-hand side of Eq. (9).
The associated prediction interval is obtained by computing the appropriate quantiles of the predictive
Gaussian distribution for Y (@new) and applying the logistic transformation (the inverse of the logit)
to them, followed by the transformation in Eq. (9).

The following covariance function was used for the GPM:

K v
Cov(xi, z;) = o |exp | — Z ok = | + ¢di;
k=1 i

where

)

(10)
dy, = range parameter for the pth predictor,

q = nugget and

0i; = Kroeneker delta

(note that this specification is adapted from [21]). The range (dy, for each k = 1, ..., K, with K denoting
the total number of predictors), the shape (v), the nugget (¢), and the variance (0?) parameters were
estimated using maximum likelihood estimation. This and other operations needed to implement the
GPM were done using routine functions available in the R package [17].

Finally, we considered two forms of the mean function g (x)3 in Eq. (5), resulting from setting
g to a constant or using a natural spline of order 3 (see [22, 23]) to model it. In case of the former,
all the predictors were used to model only the error process. In the latter case, we first separated the
predictor set x into two subsets: one used as inputs to the function g, denoted with x,,, and the other
used to model the error process Z, denoted with x, as indicated in Table 5 (note that some predictors
were in both sets). We then modeled power output Y as a function of the input vector & = (y,, Ze),
as follows:

Y<$) = Y(.’Em, "Ee) = gT(mm)IB + Z(Cce)a

with the covariance function as in Eq. (10).
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Table 5: Subsets of inputs used to model the mean function and the error process (denoted x,, and
T, respectively) for each of the five input sets enumerated in Section 3 when a natural spline of order
3 was used for the function g. The input labels are as in Section 3.1.

Input set Tm Te
1 ws 80m mean | ws 80m mean
2 ws 80m mean | ws 80m sd
3 ws equiv ws equiv
4 ws 80m mean | ws all mean
) ws 80m mean | ws all mean + sd
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